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Abstract. In his first notebook, in scattered places, Ramanujan recorded without proofs the values of over
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1. Introduction

If, as usualin the theory of elliptic functionls= k(q) denotes the modulus, then the singular
modulusk, is defined byk, = k(e~*v"), wheren denotes a positive integer. Following
Ramanujan, set = k? anda, = k2.

Closely associated with the singular modulus are the class inva@garasdg,. Let

@ Qoo =[[2—ad™,  lal <1,
n=0

and set
X(@) = (=G; P oo
Forg = exp(—m+/n), theclass invariants G andg, are defined by
G, = —o1/4 —1/24X @ and On: —214 —1/24X( q).

In the notation of Weber [12]G,=:2"Y4f(/=n) and g, =:2"Y*f;(/—n). Now
[1, p. 124]

x@ =2"%{a(l-)/q)V* and  x(—q) =2Y5(1 — )P (a/q)
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Thus,
Gn = {dan(1 —ap)} % and gy =27 Y21 —an) V%V (1)

Watson [11] remarked, “For reasons which had commended themselves to Weber and
Ramanujan independently, it is customary to detern@pdor odd values oh, andg;, for
even values ofi.” It is well known thatG,, andg, are algebraic [4, p. 214, Theorem 10.23;
p. 257, Theorem 12.17]. It follows trivially from (1.1) thaf, is also algebraic. However,
much more can be proved. Using results of Deuring [5], Chan and Huang [3] have proved
the following theorem.

Theorem 1.1.

(@) Ifn=1 (mod 4)then G, and2«,, are units.

(b) Ifn =3 (mod 8),then2-Y12G,, and 2w, are units.
(c) If n =7 (mod 8),then2-Y4G,, and 2%« are units.
(d) Ifn =2 (mod 4),then g anda, are units.

It is clear from (1.1) that if the value dB&,, (or g,) can be determined, ther, can
be computed by solving a quadratic equation. However, the expression that one obtains
generally is unattractive and does not evince the fact¢hedn be expressed in terms of units
in certain algebraic number fields. Thus, formulasifpthat facilitate their representations
via units are desirable.
In his second letter to Hardy [9, p. xxix], Ramanujan asserted that

kero = (V2 —1)*(2 = V3)*(v7 - V6)*(8 - 3V7)*
x (V10— 3)*(4 — v15)* (V15— v14)*(6 — V/35)".

This was first proved by Watson [10], who used the following remarkable formula that he
found in Ramanujan’s first notebook [8, vol. 1, p. 320] and which enables one to calculate
op, for evenn.

Theorem 1.2. Set

g = uv,
u?+1/u?> = 2U, v2 4 1/v2 =2V,
W=+U24+V2_-1
and
2S=U+V+W+ 1
Then

an = {vVS—vS—1}{[VS-U-v/S-U 1)’
x [VS—V —vS—V —1)}[VS-W - V/S—W—1}°,
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Watson'’s proof of Theorem 1.2 isvarification it does not shed any light on how Ramanu-
jan might have discovered the formula. Ramanathan [7] stated Ramanujan’s Theorem 1.2
but did not find another proof. Regrettably, we also have not found a more transparent proof.
Watson’s proof crucially depends upon the symmetry in the quadratic equatiQfefoin
terms ofg, arising from (1.1). This symmetry does not appear in the quadratic equation
for /an in terms ofG,. However, we show that the algorithm implicit in Theorem 1.2 can
be adopted to determineg, for oddn as well.

Furthermore, Watson [10] inexplicably claimed, “...this is the sole instance in which
Ramanujan has calculated the valukdbr an even integen.” In fact, twenty additional
values ofk, for evenn are found in the first notebook. At the beginning of Section 2,
Theorem 2.1 gives thirteen of these values.

On page 82 of his first notebook, Ramanujan offers three additional theorems for cal-
culatinga, whenn is even. The first (Theorem 2.2) expresegs as a product of units
involving G,. The second (Theorem 2.4) expressgg as a product of units involvinG p.

The third (Theorem 2.5) enables one to determigeas a product of two fourth powers of
units, provided that,, can be expressed as a product of units of a certain form. In Section 2
we prove these results and calculate eight examples of Ramanujan as illustrations.

The calculation ofr, whenn is odd is slightly more difficult. On page 80 in his first
notebook, Ramanujan recorded the valuesaf aszs, andagys in terms of units. This list
is repeated, with the addition afs, at the bottom of page 262 in his second notebook. On
pages 345 and 346 in his first notebook, Ramanujan recorded units that appear in represer
tations ofa, whenn = 3,5, 7,9, 13, 15, 17, 25, 55. (Inexplicably, the units faz; andays
are recorded twice.) Ramanujan also indicated that he had intended to calgyilatet no
factors are given. Of course, the result foe 15 is superseded by the complete formula
given on page 262 in the second notebook. It is unclear to us why Ramanujan only listed
portions ofx, and not complete formulas. Initially in our investigations we employed com-
putational “trial and error” to “guess” the complete formulasifgrn = 5, 9, 13, 17, 25, 55.

We remark that the values fag anda; are easily determined from the formula

an = %G;“(Gﬁz - /G2 - 1), (1.2)
which is readily obtained from (1.1). For further valuesmfhowever, (1.2) becomes
unwieldy, and so better algorithms were sought.

In Section 3 we adopt the algorithm of Theorem 1.2 and reformulate it in Theorem 3.1
in terms of G, to calculate some values af, whenn is odd. Theorem 3.2 provides a
list of all of Ramanujan’s values. Although Theorem 3.1 yields a systematic procedure for
calculatingx,, whenn is odd, the calculations are often cumbersome and the representations
that we obtain, although expressed in terms of units, are frequently more complicated than
we would like. Thus, we establish three simple lemmas that provide an alternative procedure
for calculating all of Ramanujan’s singular moduli for odd

Ramanathan [7] and J.M. and P.B. Borwein [2] previously determined some of
Ramanujan’s values far,.

Ramanujan calculated over 100 class invariants including 48 that had not been heretofore
determined. However, the values of all the invariants used in this paper can be found in
Weber’s treatise [12] as well as in Ramanujan’s notebooks [8].
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In all cases, Ramanujan simply recorded in his notebooks the values or factors of singular
moduli without explaining their meanings. It took us several years to discover that these
radical expressions were singular moduli.

2. Singular moduli for evenn

We begin with a list of thirteen values far, found on scattered pages in the first notebook.

Theorem 2.1 ([8, vol. 1, pp. 214, 288, 289, 310, 312, 313])Ve have

w = (V2-1)7
== T ()
0= (V10-3)*(3-2v2)" = %

a1g = (5v2-7)}(7-4v3)* = 2- v3)'(v2-1)° = %2:2;2,

az = (10— 3v11)%(3V11 - 7v2)’,

az0 = (5— 2v8)*(4 — V1526 — V)’ (2 — V3)*,

asr = (8—3v7)*(7 - 4/3)%(3— 2v2)* (V7 — V6)",
asg = (13v58— 99)°(99 — 70v2)°,

a70 = (15— 4v/14)*(8 — 3v7)*(3v14— 5v5)(6 — v/35)’,
azg = (2 ) ®(3v3— v26)* (V13— 2v3)*(5 - 2v/6)*,
®102

) 5 — 2v6)* (V51— 5v/2)%(2 - v/3)",
o130 = 5@ 57)°(v10-3)*(v26 - 5)*(3 - 2v2)",

and

150 = (%—13) (3718 51/10)%(2v5 - VI9) (VIO - 3v2)"

Proof: The value ofw, was, in fact, established in Example 1, Section 2 of Chapter 17
in the second notebook [1, p. 97]. Ramanathan [7] and the Borweins [2, p. 139] also
determinedy,.

All of the remaining values fox,, are easily determined from Theorem 1.2. The required
values forg, can be obtained from the tables of Weber [12, pp. 721-725]. In each instance,
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we list the values fou, v, U, V, W, andSin the table below. The reader can easily verify
the calculations.

n u v U \Y W S
6 1 1+ /2 1 4
10 1 24+4/5 1 10
18 1 5+ 26 1 49 49 50
22 1 7+ 52 1 99 99 100
30 2++/5 3+ 410 9 19 21 25
42 W2+ T 3V3+2V7 15 55 57 64
58 1 70+ 13429 1 9801 9801 9802
70 9+ 4.5 7+5V2 161 99 189 225
78 18+ 5/13 5+ /26 649 51 651 676
102 7+ 52 35+ 6434 99 2449 2451 2500
130 38+ 175 18+ 513 2889 649 2961 3250
190 38+ 175 117+ 37/10 2889 27,379 27,531 28,900

The second and third formulas fag anda,g, and the second formula farg can be
easily verified by direct calculations.

The Borweins [2, p. 139] calculated, for 1 <n < 9. Ramanathan [7] also established
a130 by using Theorem 1.2. O

Recall the definition of (x) given in [1, pp. 91, 102]. I£F1i(a, b; c; x) denotes the
ordinary hypergeometric function, then

2Fi(5 51 11-%)

2Fi(3 33 1:X)

F(x):exp(—n ) O<x<1

Theorem 2.2 ([8,vol. 1, p. 82]). If p > 0, n > 1, and

e"VP —_ F (ﬂ)’ (2.1)
then
e VP = F((Vn+1-vn)'(vn—vn=1)%. (2.2)

From(1.2)and (2.1n = G%Z. Hence, in Theorem 2.2 Ramanujan provides an algorithm
for determiningua, from the value otxp, or from Gy, namely,

aup = (/O +1- \/67}32)4(\/?})2 - Jor- 1)4. (2.3)

Before proving Theorem 2.2, we verify four examples recorded by Ramanujan.
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Examples 2.3 ([8, vol. 1, p. 82]) We have
= (vV2-1)",
oz = (V3-2)'(v2 )
azg = (V2-1)°(2v2 - V7),
and
ago = (V10— 3)*(v2 - 1)*(v6 - vB)*(vV3-v2)".

The value ofxs was also recorded in the second notebook [1, p. 97]. Bgthnda,g
were also determined by Ramanathan [7], and the Borwein brothers have detesmnined
andai; [2, pp. 139, 151].

Proof: Let p=1, so that triviallyG; = 1. Then from (2.3),
a=(2-1)'1-0*=(v2-1)"

Let p = 3, so that, from Weber's tables [12, p. 726k = 2Y/*? andn = 2. Thus, from
(2.3),

o1z = (V3- V2 (V2 - 1)".

Let p = 7, so that, from Weber’s tables [12, p. 72@; = 24 andn = 8. Thus, from
(2.3),

ag = (3—2v2)*(2v2-V7)* = (vV2-1)°(2v2 - V7)".

Let p = 15. From Weber's treatise [12, p. 721315 = 2-Y12(1 + /5)¥3. Thus,
n= (1+ +5)*/2 = 47 + 35). Hence, from (2.3),

ep = (¢29+ 12527+ 3\/5)4(2¢7+ 36— V27 + 12J§)4.

To denest these radicals, we employ the following denesting theorem §]—Ifjb? = d?,
a perfect square, then

,/a+b\/ﬁ=,/# +(sgnb),/¥, (2.4)

where we have corrected a misprint. To that end, from (2.4),

20+ 11 [29-11 _ [742 7-2\"
opp = > + > -2 ——2 -
4
y 2\/7+2+2\/7—2_\/27+3_\/27—3
2 2 2 2
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— (V20+3 - 342 - V10)*(3v2+ V10— V15— VI2)*
= {(vV10-3)(v2 - 1)}*{(v6 - VB) (V3 - V2)}". 0
Proof of Theorem 2.2:  From [1, p. 215, Eq. (24.21)], we find that

p= 51— Vi) (2.5)

o

whereg has degree 2 over. Note that, by (2.2), we are required to show that

= (Vn=1-Vh)'(Vn+1-vh)" (2.6)

By (2.1), withn:= G}f anda :=a,,

n—+n?-1
= 2n ’
which implies that
1= (Vn+ 1) +/nih—1D)> 2.7)

Since 4(1 — @) = n~2, we deduce that

ﬁ = (Vn(n+1 — yn(in—1)° (2.8)

Hence, from (2.5), (2.7), and (2.8),

4
A=/t +vnm- 1))4(1 IRVAGESY - NGIGE 1))
S ¥irs S e (V RE LRESS LR }
= (\/n2+n+\/n2—n—n—\/nzi—l)4
— (VA= 1- VA (T i-vA)'
and so (2.6) has been shown. O

Theorem 2.4 ([8, vol. 1, p. 82]). Under the same hypotheses as TheoPetn

e VP = F((VA+1+vA)*lvan+1- J2/n(vn+1+ ﬁ)}4
x {Jz——l—\/zﬁ(m—ﬁ)}A). (2.9)
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Thus, together Theorems 2.2 and 2.4 yield the formula
cep = (/O +1+ \/GT,)Z)S{ 2612 41— \/2 e(,/or+1+ Jé)r
x {\/@— 1—\/2 Gx( G%2+1—\/§)}4.

For example, ifp = 1, thenn = G; = 1, and a simple calculation shows that

a16 = (V2+1)' @Y% - )%,

Proof: From Theorem 2.2,
eV = F((F 1— Vi)' (Vi - i 1))
2 4x
() 210

Also, from Entry 2(v) of Chapter 17 in the second notebook [1, p. 93], far0 < 1,

4
F(x?) = F2<(1 +XX)2>. (2.11)

Thus, from (2.11), (2.9), and (2.10), it suffices to show that

= (AT L4 VA {Van+1- oVt i+ vD)|
x [\/%—1—\/zﬁ(mﬂ/§)}2. (2.12)

From (2.10), it follows that
2
(VA+I-va)'(Vi-vi-1)° f

Letu = /X. Sinceu tends to 0 as tends tooco, the solution of (2.13) that we seek is

+ VX (2.13)

u:(\/ AT T 2

2

1 1
\/WH JA) <f—¢—n—1>2_5)
= (VAT VA (A VD) 4 (T )
_\/(\/ﬁ+x/n—1)2—(«/n+1—«/ﬁ)2)2
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=(Wn+i+ Jﬁ)z(\/Zn T /=D —-Jnn+1
—JIN-D+/nn+ D — 1)2
=(vVn+1+ Jﬁ)z(Zn —14+2/n(n=12

—2/@n+ VNNt D+ 2n—D/n(n—1) — 4n).
(2.14)

Comparing the proposed value offrom (2.12) with that of (2.14) above, we see that it
suffices to show that

2/@n+Hynn+ D+ @n-Hv/h-1) -
= (V20 +1),/2yn(VAT1- v2) + (V2h — 1) /2/R(VA T 1+ V2). (2.15)

If we square both sides of (2.15), it is a routine matter to show that (2.15) indeed is a correct
equality. This therefore completes the proof. O

The next theorem enables one to deternaigiefrom the value otryp.
Theorem 2.5 ([8, vol. 1, p. 82]). Ifn>1, p> 0,and

e ™2 — F((vn+1- /n)(vA—vn—1)?, (2.16)

then

e VP = F({‘/ﬁ+l+ ‘n+1—\/(«/ﬁ+1)(«/ﬁ+\/n—+1)}4

Nz
x {ﬁ_ljévn+1_\/(dﬁ—l)(¢ﬁ+M)}4>. (2.17)

Observe that

{fﬂ}zﬁ JR=1)( I+W)}

{\/‘ilj}z«/nJr \/[il \/—JM/W)}_l (2.18)

Thus, if ez, can be expressed as a product of units of the fogm + 1 — /n)?(y/n —
v/n—1)2, thenag, can be expressed as a product of two fourth powers of units. Before
proving Theorem 2.5, we present three examples recorded by Ramanujan.
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Examples 2.6 ([8, vol. 1, p. 82]) We have

s = (V3+2v2-v2+2v2)",
aza = (V6+3/3-V5+3/3) (vV2+v3-vV1+v3)",

and

s = (2v/2+ V5 - 2/3+ V10) (V2 + v5— V6 + 2/10)"

Proof: Let p = 1. Then from Theorem 2.1y, = (+/2 — 1)2. Thus,n = 1, and from
Theorem 2.5,

ag = (V2+1- /21 + ﬂ))4. (2.19)

3+r1 [3-1
‘/3+2‘/§=‘/%+‘/T=‘/§+l

Using this in (2.19), we achieve the desired representatioq.of
Let p = 3. From Theorem 2.1ys = (2 — v/3)%(v/3 — v/2)2. Thus,n = 3, and from
Theorem 2.5,

But from (2.4),

a24:(3—f/_\/_ \/W) (11}2@’— 1+ﬁ>4. (2.20)

But from (2.4),

[6+3 [6-3 3+.3
Vet+3va= 2t _ 3+ V3
2 2 Nz

and

2+1 2-1 3+1
V2+4/3=,/ o, =“/—Jr :
2 2 V2

Using these calculations in (2.20), we complete the verification of Ramanujan’s represen-
tation foraoa.

Let p = 5. From Theorem 2.ky10 = (+/10— 3)2(3 — 2¢/2)2. Thus,n = 9, and from
Theorem 2.5,

aio = (2V2+ 5~ \[4(3+ m))4(ﬁ+ V5 [J2(3+ m))“,

which is what is claimed. O
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Proof of Theorem 2.5: From (2.16),
eV = (V1 — VA (Vi Vi 1))

2 4x
=F (<1+x>2>'

2 1
(Ari-vma—va-D v V" @21

and, by (2.17) and (2.5), it suffices to prove that

Hence, as in (2.13),

X_{ﬁ+1+m_
B V2

x{ﬁ_ljivn+l—\/(ﬁ—l)(ﬁ+M)} )

Letu = {/X. In view of the form (2.21), it is natural to assume that

\/(ﬁ+1)(ﬁ+\/m)}2

u=(aq —by(az — by,
where
aZ —b?=1=aj— bl (2.23)

Then, by (2.21),
1 1
(Vn+1+Vn)(Vn++vn-1)= §<u+ E) = aya, + by, (2.24)
If s:=./n+ +/n+ 1, the values ofy, by, ap, andb, that satisfy (2.23) and (2.24) are

1 -1
alz%, az:%, by = /sy/N+1, and b, =.s5//n-1

Then, as already observed in (2.18), (2.23) is satisfied. Furthermore,

aa, +bib, =n+/nn+1) + (Vn++v/n+1)v/n-1
= (Vn+1+Vn)(Vn++vn-1),

and so (2.24) is satisfied. Hence, (2.22) has been shown, and the proof of Theorem 2.5 i
complete. O
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3. Singular Moduli for odd n

From (1.1), we find that, in the notation of Theorem 1.2,
2012 = 2u%v? = — — Jap.

By elementary manipulation, we find from the other equality of (1.1) that

SGL2 — P 20, G12
" 20,G12 i

If we set

* i 20,G12
(gH*2:=iG?  and \/07;;::%

then (3.2) takes the form

’

2(g)* =

— *
o,

1
vV,

(3.1)

(3.2)

(3.3)

Comparing (3.1) and (3.3), we deduce the following theorem from Theorem 1.2.

Theorem 3.1. Set

(9 = uv,
u2—|—1/u2=2U, v2+1/v2=2V,
W=VU%24+V2-1,
and
2S=U+V+W+ 1
Then

o= [VS—VS—1)’|VS-U -vs-U - 1}?
x [VS—V —v/S-V -1}’ [VS-W - V/S—W-1}°.

The next theorem gives the twelve valuesogf whenn is odd, that are found in

Ramanujan’s notebooks. In those instances when two representations are given, the forme
one is that which is in the notebooks, or that which contains the units provided by Ramanu-

jan in his notebooks. The Borweins [2, pp. 139, 151] calculatgdorn=3,5, 7,9, and

15, and Ramanathan [7] determinggd forn=3, 7, 9, and 15.
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Theorem 3.2. We have

ws — %<£2— 1)3 (/3:@ _\/¢54— 1)

ey (f2+1 /¢§2+1)27

8— 3.7
AT
_1/v/3-1)\* \/3+\/§ V3-1 8
T2 fz) 4 Va4
2% V3 1)4<\/4+2f3 \/3+2f)

4

\/3+J1_3
B 4

(
(5

(5 (=
(

2

s = = (ﬁ - 1)4(2 V34

Jl_at—3)3 (\/19+5¢1—3_\/17+5«/1—3)2

2

V).

1 \/7+JT7 \/3+J1—7
=5 4 4

a21=%<3ﬁf) (f2ﬁ> (\/5+4f7\/1+4f7)4
y (\/3+ﬁ_\/ﬁ1)4
4 4 ’

4

a5 = %(161— 72V/5) <\/5+ 5 _

\/1+~/§ °
2 :

)4(\/3+\/4+~/1_7\/\/4+\/1_71)8
4 4 ’

65
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vy — (2 NS (Jjé )(\/7+j\/§_\/3+j\/§)
\/5+J§ \/1+~/§ ‘
x 2\ 2 ’
. iova( [1r3vs  [313v8)
(2 ()
\/3+J§ \/1+J5 ‘
X 2 - 2 )
ass = 4(v/5 — 2)?(10— 3v11) (3v5 — 2v11)

) (/7+8¢E/ﬁgl)lz(/4+2¢é/z+2¢s)4_

Proof of Theorem 3.2 forn=3,5,7,9,13: These five values are easily computed by
using Theorem 3.1. The required values@yrmay be found in Weber's tables[12, p. 721].
In each instance, we list the values tor, U, V, W, andSin the table below. The reader
should easily be able to verify the calculations.

and

n u v U Vv w s
3 expri/4) V2 0 s 3 s
5 expni/4) V2+/5 0 V5 2 13+V5
7 expi/4) 272 0 2 i 2
9 exp(ri/4) 2+4/3 0 7 4/3 4423
13 exuri/4  V18+5/13 0  5/13 18 119+ 5V13)

Except forn =55, we have also used Theorem 3.1 to calculate the remaining values in
Theorem 3.2. However, the following lemmas lead to simpler calculations.

Lemma 3.3. Ifr is any positive real number and=t ./(r + 1)/8, then

i (\/@ . E) (3.4
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Proof: The equality (3.4) can be readily verified by elementary algebra. O

Lemma 3.4. Ifr andt are as given in Lemma3, then
8

t 1 t+1-1
r_\/rzf_zl +2+ JV” _ (3.5)

2

Proof. Itis readily verified that

t+3+1 t+§—
S t+——t—— (3.6)

Using Lemma 3.3 in (3.6), we deduce (3.5).
We frequently seG = G, below, when the value of is understood. O

Proof of Theorem 3.2 forn=5, 9, 13, 15,17, 25: Letn = 5. From Weber's tables [12,
p. 721],

3
GE:(ﬁ?ﬁ)zv@+z (3.7)

If r = G?in Lemma 3.3, then

_[3+vB VB2
Vs T4

12 g1 (/¢§4+3_\/‘/§4_ 1) , (3.8)

Thus, the given value fars follows immediately from (1.2), (3.7), and (3.8).
Letn = 9. From Weber's tables [12, p. 721],

4
G2 (*@‘Jg 1) — 7443 (3.9)

Applying Lemma 3.4 withr = G$2, we find that

( /8+4¢§ ~7+1
/t+_ /2+f 1+f3

and




68 BERNDT, CHAN AND ZHANG

and

8
G JoE I (\/3:[3 _ \/‘/54‘ 1) , (3.10)

Thus, by (1.2), (3.9), and (3.10), we deduce Ramanujan’s valugfor
Letn = 13. From Weber’s tables [12, p. 721],

13+ 3\°
Gi§=<c+ ) — 18+ 5V13. (3.11)

Then in Lemma 3.3, set= G2 to deduce that

(_ [19+5V18 5+ V13
B 8 4

4
Giz_ 624_1:(\/7+m_\/3+m) . (3.12)

and

4 4

Hence, the given value far;3 follows from (1.2), (3.11), and (3.12).
Letn = 15. From Weber’s tables [12, p. 721],

1
GiE=5(v5+1)' =28+12/5. (3.13)

Apply Lemma 3.3 witlr = G12. Then

(_ [29+12V5
_‘/78 :

o Jom o 1| | [2riaE 1 | 294125 1
8 2 8 2
2
B (\/29+ 12/5 \/27+ 12J§)
- 2 2

=28+ 125 \/ (294 12v/5) (27 + 12/5)

= 28+ 125 - 16V3 - 7/15
= (2-V3)*(4— V15). (3.14)

and so
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Hence, by (1.2), (3.13), and (3.14), the desired result follows.
Letn = 17. From Weber's book [12, p. 721],

12
5+ V17 17-3
Gg:(\/ +£/_+\/*/—8 ) :20+5J1—7+\/(2o+5«/1—7)2—1,

after a lengthy calculation. We now apply Lemma 3.3 witk 20+ 5/17. Then

(= 21+5V17 5417
-y 8 - a4

4
GI712=(\/7+;/1_7_\/3+;/1—7) . (3.15)

Next, set = 20+ 5v/17+ /(204 5¢/172 — 1in Lemma 3.4. Then

and so

t _J 21+ 517+ /(204 5¢/17) - 1

8
_\/42+10\/1_7+4\/206+50\/1_7
- 16
3+ V174244 V17
- 4
and
[1 \/5+\/1_7+2 44+ V17 1+V4+ V17
t+_= = .
2 4 2
Thus,

G- /G%-1= (3.16)

(Je,wT—mJ@l)f

Using (3.15) and (3.16) in (1.2), we complete the proof.
Letn = 25. From Weber’s treatise [12, p. 722],

5 1 12
G2 <f2+ ) = 161+ 72V/5. 3.17)
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Withr = G}2in Lemma 3.4,

. _ |162+72/5  6+3V5
B 8 2

and
oo |7+3V5  3+5
2 2 2 7
Hence,
8
5 5 1 5
G2 /G _1— (\/ +4f _\/ +4f) . (3.18)
Putting (3.17) and (3.18) in (1.2), we complete the proof. O

The next lemma will enable us to calculatg, o33, aas, andass.

Lemma3.5. Letr = uv, wherev > uanduisaunit. Set = u; +u,, wherey, u,, > 0
and ¢ — u3 = 1. Furthermore let

a’ =1+ 2vu; 4+ and B =1-—2vu; + v2,

where ab > 0. Then

4
a+b+2 1 a+b+2 1
_Jr2_1= errte - _ |/ jgrfre -
r=vr (\/V 6 12 \/V 16 2)
4
a—-b+2 1 a—-b+2 1
X(\/\/T+§_\/\/T_E)' (3:19)

Proof: The right side of (3.19) equals

(52 ) (o )
(55 (252 )
(az;bz+/<az;bz>z_az;bzﬂ)
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Set

a2 — b2 a2 —p2\? a2+ b2
= - 1.
r 7 + < 2 ) > +

Then, by an elementary calculation,

2 2
GESELY EET N . /<i2b) o

Hence, we see that the right side of (3.20) equals+/r’2 — 1, and it therefore remains to
show thatr =r’.
In fact, from the definitions o&? andb?,

r’zvul+\/v2u§+1—(l+v2)

= vUp + vy /U2 — 1

=vUr+vUp=vU=T,
which completes the proof. O

Proof of Theorem 3.2 forn=21, 33 45,55: Letn = 21. From Weber's treatise [12,
p. 722],

L [(3+vT\ (VT3
r.=Gs= 7 5

Setu; = 2+/7 andv = 8 4+ 3/7 in Lemma 3.5. Then

a2 = 1+2(8+ 3v7)2v7 + (8+3v7)" = 212+ 80V7 = (10+ 4v/7)?

) = (8+3V7)(2v7 + 3V3). (3.21)

and
b? = 1-2(8+3v7)2v7 + (8+3V7)" = 44+ 16vV7 = (4 + 2V7)".

Hencea = 10+ 4+/7 andb = 4 + 2/7. Moreover,

[a+b+2  [16+6V7  3+47
16 6 4
[a—b+2 [8+2V7 147

6 6 4

and
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Thus, by Lemma 3.5,

4 4
iz 624_1=(\/5+4ﬁ_\/1+4ﬁ) (\/3+4ﬁ_\/ﬁ4—1) a2

On using (3.21) and (3.22) in (1.2), we complete the proof.
Letn = 33. From Weber’s treatise [12, p. 722],

V11+3
NG

Apply Lemma 3.5 withu; = 10 andv = 26+ 15/3. Then

G¥=(2+ 3)3< ) = (26+ 15V/3)(10+ 3V11). (3.23)

a? = 1+ 2(26+ 15v3)10+ (264 15v/3)° = 1872+ 1080v/3 = (30 + 18v3)’
and
b? = 1 — 2(26+ 15v/3)10+ (26 + 15v/3)” = 832+ 480v/3 = (20+ 12V3)°

Thus,a = 30+ 18y/3 andb = 20+ 12./3, so that

[a+b+2 [52+30/3 5+33
16 6 4
[a—b+2 [12+6V3 3+43
16 6 4
Thus, by Lemma 3.5,
4 4
oo 024—1=(/7+3ﬁ—/3+3ﬁ) (\/5+¢§_\/1+«/§) _
4 4 4 4

(3.24)

and

Upon substituting (3.23) and (3.24) in (1.2), we complete the proof.
Letn = 45. From Weber’s book [12, p. 723],

V543
NG

We apply Lemma 3.5 withi; = 31 andv = 38+ 17./5. Thus,

4
G2 = (vVB+2)° ( ) = (38+17V5)(31+8V15).  (3.25)

a? = 1+ 2(38+ 17v/5)31+ (384 17v/5)° = 5246+ 2346//5 = (514 23V/5)°
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and
b? = 1 - 2(38+ 17v/5)31+ (38+ 17v/5)” = 534+ 238//5 = (17+ 7/5).

Hencea = 51+ 23v/5 andb = 17+ 7+/5, so that

[a+b+2  [70+30v/5 5+3V5
16 6 4
[a—b+2 [36+16V5 2++5
16 6 = 2
So, by Lemma 3.5,
4 4
e 624_1:(\/7+2¢§_\/3+j£) (\/3+2¢S_\/1+2¢§) (326)

The desired evaluation now immediately follows from (1.2), (3.25), and (3.26).
Letn = 55. From Weber's treatise [12, p. 723],

12
G2 =8(v5+2)° (\/”8‘/3 + \/‘/58_ 1)

2
= 8(v5+2)° L”L:S‘/g +J (—99+ 45‘/3) 1. (3.27)

and

4

Apply Lemma 3.5 withu; = (994 45/5)/4 andv = 8(+/5 + 2). Thus,
a?=1+2-8(v5+ 2)2%(99+ 455) + 64(+/5+ 2)°
= 17469+ 7812/5 = (93+ 42/5)°
and
b?=1-2-8(+5+ 2)2%(99+ 45v/5) + 64(~/5+ 2)"*
— 3141+ 1404/5 = (394 18V5)°.

Thus,a = 93+ 42v/5 andb = 39+ 18/5, so that

[a+b+2  [67+30/5
6 8
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and

[a—b+2 [7+3/5 3+45
6 2 2

Thus, by Lemma 3.5,

674+30v5 1 67+30v5 1
Gl2_ /G _1= +70\/—+__ +70\/___
8 2 8 2
4
4 5 2 5
5 / +f_\/ ++/5 ‘ (3.28)
2 2
Now, by Lemma 3.3,
4
67+30v5 1 67+30v5 1
%W—”LE_ +T°f_§ —66-+30V5 — /(66+30v5)? — 1

=66+ 30v5 — 9v55— 2011
= (10— 3V11)(3v5 - 2V11).
(3.29)

Using (3.29) in (3.28) and then (3.27) and (3.28) in (1.2), we complete the proof. O

References

1. B.C. BerndtRamanujan’s Notebooks, Part |iEpringer-Verlag, New York, 1991.
. J.M. and P.B. BorweirRi and the AGMWiley, New York, 1987.
3. H.H. Chan and S.-S. Huang, “On the Ramanujan-Gordoln{& continued fraction,"The Ramanujan
Journall (1997), 75-90.
4. D.A. Cox,Primes of the Form %+ ny?, Wiley, New York, 1989.
5. M. Deuring, “Die Klassentper der komplexes MultiplicationEnz. Math. Wiss. Band | Heft 10, Teil Il
(Stuttgart), 1958.
6. S. Landau, “How to tangle with a nested radicBAth. Intell. 16 (1994), 49-55.
7. K.G. Ramanathan, “Remarks on some series considered by Ramarujamdfan Math. Soc46 (1982),
107-136.
8. S. RamanujariNotebookg?2 volumes), Tata Institute of Fundamental Research, Bombay, 1957.
9. S. RamanujarCollected PapersChelsea, New York, 1962.
10. G.N. Watson, “Theorems stated by Ramanujan (XIl): A singular moduluggndon Math. So® (1931),
65-70.
11. G.N. Watson, “Some singular moduli (IQuart. J. Math.3 (1932), 81-98.
12. H. Weber|ehrbuch der Algebra, Dritter BanChelsea, New York, 1961.

N



